The Warming went into the Deep

Published On: May 30, 2013

The answer is blowing in the wind: The warming went into the deep end

Rasmus Benestad / RealClimate April 26, 2013: There has been an unusual surge of interest in the climate sensitivity based on the last decade’s worth of temperature measurements, and a lengthy story in the Economist tries to argue that the climate sensitivity may be lower than previously estimated. I think its conclusion is somewhat misguided because it missed some important pieces of information (also see skepticalscience’s take on this story here).

“The ocean heat content and the global mean sea level height have marched on”

While the Economist referred to some unpublished work, it missed a new paper by Balmaseda et al (2013) which provides a more in-depth insight. Balmaseda et al suggest that the recent years may not have much effect on the climate sensitivity after all, and according to their analysis, it is the winds blowing over the oceans that may be responsible for the ‘slow-down’ presented in the Economist. It is well-known that changes in temperature on decadal time scales are strongly influenced by natural and internal variations, and should not be confused with a long-term trend (Easterling and Wehner, 2009;Foster and Rahmstorf, 2011). An intensification of the trades has affected surface ocean currents called the subtropical gyres, and these changes have resulted in a predominance of the La Nina state. The La Nina phase is associated with a lower global mean temperature than usual.

Balmaseda et al’s results also suggested that a negative phase of the pacific decadal oscillation (PDO) may have made an imprint on the most recent years. In addition, they found that the deep ocean has warmed over the recent years, while the upper 300m of the oceans have ‘stabilised’.

Ocean Heat Content

“The recent changes in these decade-scale variations appear to have masked the real accumulation of heat on Earth.”

Global Sea Level Height

The oceans can be compared to a battery that needs to be recharged after going flat. After the powerful 1997-98 El Nino, heat flowed out of the tropical oceans in order to heat the atmosphere (evaporative cooling) and the higher latitudes. The warming resumed after the ‘deflation’, but something happened after 1998: since then, the warming has involved the deep ocean to a much greater extent. A weakening of the Atlantic meridional overturning circulation (MOC) may have played a role in the deep ocean warming.

The new knowledge from this paper, the way I read it, is the revelation of the role of winds for vertical mixing/diffusion of heat in a new analysis of the world oceans. Their results were derived through a set of different experiments testing the sensitivity to various assumptions and choices made for data inclusion and the ocean model assimilation set-up.

The analysis involved a brand new ocean analysis (ORAS4; Balmaseda et al., 2013) based on an optimal use of observations, data assimilation, and an ocean model forced with state-of-the-art description of the atmosphere (reanalyses). By running a set of different experiments with the ocean model, including different conditions, such as surface winds and different types of data, they explored which influence the different conditions have on their final conclusion.

The finding that the winds play a role for the state of the warming may not be surprising to oceanographers, although it may not necessarily be the first thing a meteorologist may consider.

 

Views: 429

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

About the Author: Climate State
Climate State
Climate State covers the broad spectrum of climate change, and the solutions, since 2011 with the focus on the sciences. Climate State – we endorse data, facts, empirical evidence.
Subscribe
Notify of
guest

3 Comments
Oldest
Newest
Inline Feedbacks
View all comments